Modelling Groundwater Flow in Hard Rock Environments Alexander Renz, DHI, Munich, Germany

Part 1

Representing Complex Geology

3D Groundwater Model

3D Groundwater Model

Multi-Faulted Regional Groundwater Model, Switzerland

3D Groundwater Model

- Continuous Layers
- Vertical Walls

Unstructured Meshes

All Problems solved?

Creating Computation Meshes

Traditional Layered Meshes

Mathematical Approach

• Finite Differences Method

• Finite Element Method

2.5 D Mesh (Layered Mesh)

2 Triangles \rightarrow 1 Quadrangle

Element Deactivation

- Create Caveats in Mesh, e.g. for pit mines or tunnels
- Permanent or temporary

Element Deactivation

 Remove unwanted layers (Top / bottom only)

Steep Interfaces

- moderate inclination: Layer Elevation
- steep inclination: step layout

Creating Computation Meshes

Layered Meshes with local remeshing

Pinching

Pinching

Local Re-Meshing

Creating Computation Meshes

Non-Layered (Fully Unstructured) Meshes

- Geological contacts (volumes)
- Insets such as well locations

Challenges

Piecewise Linear Complexes (PLC)

http://wias-berlin.de/software/tetgen/plc.html

The Problem of Self-intersecting Surfaces

Closed and Consistent Volumes

Example Case

DHI In-House Solution with TetGen

• Case 1: Offset at isolated fault

- Solution: Record and sort all elevation data at faults
- + applicable for isolated faults
- Not applicable for isolated faults

• Case 2: Intersecting Faults

Grouping of elements to sectors

+ can represent more generell complex settings

Consideration of Pinchouts

• Pinchouts and outer model hull

Closing of Remaining Gaps

• Ensure closed volumes

Regional Markers

• Bookkeeping for later numerical model

Entwicklung der Methodik

- Result: Set of 3D face objects consistently enclosing all separable geologic volumes
- ~ 700.000 points
- ~ 500.000 faces

Face Objects

- Light green: Faults
- blue: pinch-outs
- Other colors: geologic contacts

EBELOW (R)

Carbonate Layer at Depth

CGAL Meshing Generator

Computational Geometry Algorithms Library CGAL

CGAL Library

Computational Geometry Algorithms Library CGAL

- Open Source (www.cgal.org)
- Integrated in Geomodeller (Intrepid Geophysics)

Pilot Model of Lusitian Over-Thrust

- Geological model created in 3D Geomodeller
- Incl. Major geologic units
- Incl. vertical faults and Lusatian overthrust

Unstructured mesh generated

Tetrahedron mesh created using CGAL

© DHI

Handling of Faults

Faults require a finite thickness

- Conduit
- Barrier

Handling of Faults

Mesh Refinement

Accuracy vs. Computational Speed

Elements: 669.910 Nodes: 114.274 Elements: 723.628 Nodes: 124.077 Elements: 1'201.954 Nodes: 201.930

Optimum for Geometric Representation

Optimum for Computation

DHI

Finally: What are the Benefits?

Flexibility

Thank you!

are@dhigroup.com

About DHI

DHI are the first people you should call when you have a tough challenge to solve in a water environment.

In the world of water, our knowledge is second-to-none, and we strive to make it globally accessible to clients and partners.

So whether you need to save water, share it fairly, improve its quality, quantify its impact or manage its flow, we can help. Our knowledge, combined with our team's expertise and the power of our technology, hold the key to unlocking the right solution.

