

Dr.-Ing. Thomas Reimann, Prof. Dr. Rudolf Liedl

General Strategies with numeric modeling

Some insights and examples for complex settings

Praha, March 4th, 2019

Investigation and Management of complex systems

Edwards Aquifer (Texas, US) = initial example for motivation

- very productive and important aquifer
- provides drinking water for > 2 million people, agriculture, and industry ٠
- complex karstic system

60

120 Km

The model helps to predict and manage this water resource

Content of the presentation

- <u>General workflow</u>
- Examples:
 - Lez catchment (France)
 - Sheshpeer spring (Iran)
- Conclusion and Outlook

General workflow Numerical groundwater modeling

General workflow 1) Question / Purpose

Starting point for modeling:

Question / Purpose

Typical purposes

- prediction
- parameter identification
- system understanding
- analysis / interpretation

Scheme from Anderson et al. 2015

General workflow 1) Question / Purpose

Starting point for modeling:

Question / Purpose

Typical purposes

- prediction
- parameter identification
- system understanding
- analysis / interpretation

Scheme from Anderson et al. 2015

Inverse parametrization with tracer testing at a karst system (Freiheit Spring, USA)

Scheme from Anderson et al. 2015

Simulation of a karst system in Nimes (France); the model supports the understanding of the system behavior (overflow springs; Figure: J.-C. Maréchal and photo: G. Jouanen)

Scheme from Anderson et al. 2015

General workflow 1) Question / Purpose

Starting point for modeling:

Question / Purpose

Typical purposes

- prediction
- parameter identification
- system understanding
- analysis / interpretation

Interpretation of hydraulic tests (e.g. pumping tests; Figures from Giese et al. 2017)

Scheme from Anderson et al. 2015

interpretation of hydraunc tests (e.g. pamping tests, Figures from diese et

TECHNISCHE UNIVERSITÄT DRESDEN

General workflow 2) Conceptual Model

Very important step

- qualitative system behavior (structure, boundaries)
- interpretation of (current) knowledge
- also: depict current uncertainty
- *further (suggested) reading: Bredehoeft 2005*

5. Calibration

Process

Figure: Example of a conceptual model (USGS WRIR 99-4224)

General strategies with numerical modeling Dr.-Ing. Thomas Reimann, Prof. Dr. Rudolf Liedl RESIBIL Model Workshop • Praha • March 4th 2019

Scheme from Anderson et al. 2015

Figures: Examples of numerical models (based on MODFLOW6)

Scheme from Anderson et al. 2015

General workflow Subsequent steps

Calibration, Sensitivity and Uncertainty analysis

- Depending on the initial question / purpose (e.g. forcast)
- Iterative process with a feedback loop to previous steps

 → Advanced methods for further analysis like PEST (e.g. automatic calibration & uncertainty analysis)

5. Calibration Process

Content of the presentation

- General workflow
- Examples:
 - Lez catchment (France)
 - Sheshpeer spring (Iran)
- Conclusion and Outlook

Example

Lez karst spring (France) Modification of conceptual model

Karst characterization with artificial signals (high-capacity pumping)

- Lez aquifer (near Montpellier, South of France)
- high capacity pumping test was conducted to investigate the system (cost ~ 14 Mio. €)

conduit head observation

temporal and spatial system reaction

matrix head observation

Approaches for mathematical models to account for karstic systems

* considers turbulent flow in discrete karst conduits that (from Teutsch and Sauter 1991)

interact with a laminar matrix continuum)

 $Q_{ex} = \alpha_{ex}(h_c - h_m)$

Discrete Conduit – Continuum numerical model (Hybrid Modell Approach)

Matrix

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) \pm W = S_S \frac{\partial h}{\partial t}$$

<u>Conduit system</u>

laminar

turbulent

Transfer

$$v = -\frac{d^2}{32} \frac{g}{v} I$$
Hagen Poiseuille
$$v = 2log \left(\frac{k_c}{3.71d} + \frac{2.51v}{d\sqrt{2gdI}}\right) \sqrt{2gdI}$$
Colebrook-White

Karst aquifer scheme (Bauer 2002)

Conceptual model → Idealized numerical model

some available data (e.g. Maréchal et al.

<u>2008)</u>

- main conduit diameter ~ 3.5 m
- Transmissivity T_{matrix} 1.6E-5 m²/s
- Storage S_{matrix} 0.007
- Buèges river loses ~ 0.015 m³/s
- Hérault inflow during pumping ~ 0.030 m³/s
- and more ...

Scheme from Anderson et al. 2015

Enhancement of the mathematical model – consideration of an additional process

- existing model: storage mainly provided by the matrix, no storage from the conduit system
- updated model: additional (fast reacting) storage associated with conduits (e.g. large fractures, caves)

→ Addition of drainable storage to conduits as already depicted in the concept of Renner 1996

Calibration results with the enhanced numerical model

Preliminary results

→ the (enhanced) numerical model can reflect the processes (ready for a refined calibration)

Content of the presentation

- General workflow
- Examples:
 - Lez catchment (France)
 - <u>Sheshpeer spring (Iran)</u>
- Conclusion and Outlook

Sheshper spring Iran Multi-criteria-optimization

Example: Sheshpeer spring Karst characterization with multiple signals

Example: Sheshpeer Catchment, Iran

from Google maps

Content of the presentation

- General workflow
- Examples:
 - Lez catchment (France)
 - Sheshpeer spring (Iran)
- <u>Conclusion and Outlook</u>

Development trends

- Increasing computing power
- Increasing connection and networking
- Data: Improved access and increasing amount

Development of the numerical flow model MODFLOW (open source & state of the art)

MODFLOW Model with the start of the start o

MODFLOW6: flexible finite-volume discretization and flexible coupling of several models (figures from MODFLOW6 documentation)

- → flexible spatial discretization (control finite volume)
- → coupling of several models (one solution matrix for several models)

Development of the numerical flow model MODFLOW (open source & state of the art)

- MODFLOW6
- MODFLOW One-Water-Hydrologic-Modell (OWHM2)

- → reflects the overall hydrologic cycle
- → several processes (agriculture,

unsaturated zone, streams etc.)

MODFLOW-OWHM: integrated hydrologic model

Development of the numerical flow model MODFLOW (open source & state of the art)

- MODFLOW6
- MODFLOW One-Water-Hydrologic-Modell (OWHM2)

Development of Pre- and Postprocessing

• Script based (Python, FloPy)

Development of the numerical flow model MODFLOW (open source & state of the art)

- MODFLOW6
- MODFLOW One-Water-Hydrologic-Modell (OWHM2)

Development of Pre- and Postprocessing

- Script based (Python, FloPy)
- Integration in GIS (QGIS; FREEWAT)

References and some further readings

- Sullivan, T. P., Gao, Y., Reimann, T.: Nitrate Transport in a Karst Aquifer: Numerical Model Development and Source Evaluation. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2019.03.078.
- Giese, M., Reimann, T., Bailly-Comte, V., Maréchal, J.-C., Sauter, M., & Geyer, T.: Turbulent and laminar flow in karst conduits under unsteady flow conditions: Interpretation of pumping tests by discrete conduit-continuum modeling. Water Resources Research, 54, 1918–1933, https://doi.org/10.1002/2017WR020658.
- Giese, M., Reimann, T., Liedl, R., Maréchal, J.-C., Sauter, M.: Application of the flow dimension concept for numerical drawdown data analyses in mixed-flow karst systems. Hydrogeol J. 25: 799. https://doi.org/10.1007/s10040-016-1523-7.
- Reimann, T., Giese, M., Geyer, T., Liedl, R., Maréchal, J.C., and Shoemaker, W.B.: Representation of water abstraction from a karst conduit with numerical discrete-continuum models, Hydrol. Earth Syst. Sci., 18, 227-241, doi: 10.5194/hess-18-227-2014.
- Langevin, Christian D.; Hughes, Joseph D.; Banta, Edward R.; Niswonger, R. G.; Panday, Sorab; Provost Alden M. (2017): Documentation for the MODFLOW 6 Groundwater Flow Model. United States Geological Survey USGS. Reston, Virginia, USA (US Geological Survey Techniques and Methods, TM6-A55).
- Anderson, Mary P.; Woessner, William W.; Hunt, Randall J. (2015): Applied groundwater modeling. Simulation of flow and advective transport. Second Edition. Amsterdam: Elsevier.
- Bredehoeft, John (2005): The conceptualization model problem? Surprise. In: Hydrogeol J 13 (1), S. 37–46. DOI: 10.1007/s10040-004-0430-5.

Further information and contact: Thomas.Reimann@tu-dresden.de

